Kanal- und straßenbautechnischer Bericht

Projekt:

Erschließung Neubaugebiet "Vor der Burg"

in Merxheim, 1. Bauabschnitt

AG der Untersuchung:

Hans Schneider Bauunternehmung GmbH

Herr Wagner In der Aue 14

55627 Merxheim

Untersuchung Nr.:

2044/20

Datum:

27.05.2020

1. Veranlassung

In der Ortsgemeinde Merxheim wird die Erschließung des Neubaugebietes "Vor der Burg", 1. Bauabschnitt geplant. Im Rahmen dieses Vorhabens wurde der Unterzeichner durch die Hans Schneider Bauunternehmung GmbH mit der Durchführung umweltund geotechnischer Untersuchungen bezüglich der Erschließung (Straßen- und Leitungsbau) beauftragt. Zudem wurde auftragsgemäß im Bereich des geplanten Regenrückhaltebeckens der Wasserdurchlässigkeitsbeiwert des Baugrundes in situ ermittelt. Die Ergebnisse der örtlichen Feststellungen und Laboruntersuchungen sind in dem nachfolgenden Bericht zusammenfassend dokumentiert und im Hinblick auf den Untersuchungsauftrag abschließend beurteilt.

2. Probenentnahme

Am 15.04.2020 wurden im Bereich der derzeitigen Ackerfläche durch den Auftraggeber im Beisein des Unterzeichners insgesamt vier Baggerschürfe (BS 1 bis BS 4) bis maximal 3 m unter GOK angelegt. Die Baggerschürfe wurden durch den Unterzeichner profiltechnisch aufgenommen und die angetroffenen Schichten auf der Grundlage einer augenscheinlichen und händischen Prüfung angesprochen. Zudem wurden schichtenbezogene Proben entnommen und im Labor zu Misch- und Sammelproben vereint. An den Misch- und Sammelproben wurden umwelt- und geotechnische Untersuchungen durchgeführt.

Die Lage der Erkundungsstellen sowie die Untersuchungsergebnisse können den Anlagen entnommen werden.

3. Untersuchungsergebnisse

Die Prüfungen wurden gemäß bzw. in Anlehnung an die zur Zeit in Rheinland-Pfalz gültigen Vorschriften und Regelungen durchgeführt.

3.1 Art und Dicke der Schichten

Plangebiet stehen unterhalb einer ca. 40 cm dicken Oberbodenschicht (Ackerkrume) im Bereich der Hangschulter (BS 1 und BS 2) regionalgeologisch typische Kiesböden in lehmiger Matrix schluffia. tonig sandig. schwach mit vereinzelt Natursteinkomponenten und lehmigen Einschaltungen) und im Bereich der Talaue (BS 3 und BS 4) Lehmböden mit dünnlagigen kiesigen Einschlüssen (Schluff, kiesig, sandig, schwach tonig mit vereinzelt Natursteinkomponenten) an. Tiefgründig sind anhand der geologischen Karte beurteilt, rotviolette Konglomerate. Fanglomerate sowie untergeordnet Sandsteine des Oberrotliegenden (Waderner Schichten) zu erwarten.

Die aufgeschlossenen Böden weisen zum Zeitpunkt der Untersuchung im Bereich der Hangschulter eine steife Konsistenz bzw. mitteldichte Lagerung und im Bereich der Talaue eine weiche bis steife Konsistenz auf.

Gemäß DIN 18 196 sind die aufgeschlossenen Böden in die Bodengruppe der leicht- bis mittelplastischen Schluffe (UL/UM) sowie der stark schluffigen Kiese (GU*) einzustufen. Gemäß ZTV E-StB 17 ist der Baugrund als sehr frostempfindlich zu beurteilen (Frostempfindlichkeitsklasse F 3).

Zum Zeitpunkt der Untersuchung wurde innerhalb des Baggerschurfes BS 4 (geplantes RRB) ein mäßiger Schichtwasserzulauf festgestellt. Nach einer Wartezeit von ca. 1,5 Std. stellte sich in einer Tiefe von ca. 2 m unter GOK ein Wasserstand ein.

Weitere Details können der Ergebniszusammenstellung im Anhang entnommen werden.

3.2 Chemische Beschaffenheit der Böden

Nach entsprechender Vorbereitung und Homogenisierung der entnommenen Proben wurden insgesamt vier Sammelproben der nachfolgend aufgeführten Messstellenbereiche und Kennzeichnung nach LAGA TR, Tab. II.1.2-4/5 im Feststoff und Eluat untersucht. Die chemisch analytischen Untersuchungen wurden durch die AGROLAB Labor GmbH durchgeführt. Auftragsgemäß wurden die untersuchten Böden unter Einbeziehung des organoleptischen Befundes und der chemisch-analytischen Untersuchungen hinsichtlich ihrer möglichen Wiederverwertung/Beseitigung gemäß LAGA TR sowie den länderspezifischen Regelungen eingestuft. Die Ergebnisse der chemisch-analytischen Untersuchung können der nachfolgenden Tabelle sowie dem PN 98-Protokoll im Anhang entnommen werden.

Probenbe- zeichnung	Schicht	Proben- art	Unter- suchungs- umfang	zur Einstufung relevanter Parameter	Stoff- konzen- tration	Einstufung gemäß LAGA TR
Sammelprobe SP 1	Baggerschurf BS 1 (1.1 + 1.2)	Lehm (GU*)	z		Z 0	
Sammelprobe SP 2	Baggerschurf BS 2 (2.1 + 2.2)	(GU*)	Tab.	alle ermit		Z 0
Sammelprobe SP 3	Baggerschurf BS 3 (3.1 + 3.2)	Lehm	II.1.2-4/5, Feststoff und Eluat	Stoffkonzentrationen unterschreiten den jeweiligen Grenzwert Z 0		Z 0
Sammelprobe SP 4	Baggerschurf BS 4 (4.1 + 4.2)	(UL/UM)				Z 0

3.3 Versickerung

Im Bereich des geplanten Regenrückhaltebeckens wurde ein kr-Wert von 5 x 10⁻⁷ m/s ermittelt. Die aufgeschlossenen Böden sind im Bereich des geplanten Regenrückhaltebeckens als schwach durchlässig einzustufen. Gemäß ATV A 138, Planung, Bau und Betrieb von Anlagen zur Versickerung von Niederschlagswasser liegt der entwässerungstechnisch relevante Versickerungsbereich etwa in einem kr-Bereich von 1 x 10⁻³ und 1 x 10⁻⁶ m/s. Auf der Grundlage des durchgeführten Feldversuches beurteilt, weisen die maßgebenden Böden eine im Hinblick auf eine Versickerung gemäß ATV A 138 unzureichende Wasserdurchlässigkeit auf.

4. Umwelttechnische Beurteilung

Die Aushubböden sind, auf der Grundlage der durchgeführten Untersuchungen beurteilt, in die Einbauklasse Z 0 einzustufen (AVV 17 05 04).

Die Gehalte bis zum Zuordnungswert Z 0 kennzeichnen natürlichen Boden. Bei Unterschreitung der Zuordnungswerte Z 0 ist gemäß LAGA TR im Allgemeinen ein uneingeschränkter offener Einbau von Boden möglich.

Darüber hinaus werden die gemäß § 12 Absatz 4 BBodSchV 70 Prozent der Vorsorgewerte nach Anhang 2 Nr. 4 BBodSchV (für Arsen und Nickel), welche bei einer landwirtschaftlichen Folgenutzung für das Auf- und Einbringen von Materialien auf oder in den Boden zugrundgelegt werden überschritten. Die leicht erhöhten Arsen- und Nickelgehalte sind geogenen Ursprungs und regionalgeologisch typisch.

5. Homogenbereiche gemäß DIN 18 300

Für die Aushubböden kann gesamteinheitlich folgender Homogenbereich angenommen werden. Die Angaben beziehen sich dabei auf den Zustand des Bodens zum Zeitpunkt der Aufschlussarbeiten.

Eigenschaft/Kennwert	Homogenbereich 1
Schicht	Baggerschürfe BS 1 bis BS 4
ortsübliche Benennung	Lehm: Kies in lehmiger Matrix und Lehm mit dünnlagigen kiesigen Einschlüssen
Bodenart	Gemisch aus: Kies, schluffig, sandig, schwach tonig mit vereinzelt Natursteinkomponenten und lehmigen Einschaltungen und Schluff, kiesig, sandig, schwach tonig mit vereinzelt Natursteinkomponenten
Bodengruppe	GU*/UL/UM
Größtkorn [mm]	ca. 200
Stein- und Blockanteile [%]	< 5
Dichte [g/cm³]	ca. 1,8 - 2,2
Konsistenz/Lagerungsdichte	weich bis steif
organischer Anteil [%]	< 1
Boden- und Felsklasse gemäß DIN 18 300 (alt)	3 bis 5
Einbauklasse gemäß LAGA TR	Z 0
Abfallschlüssel AVV	AVV 17 05 04
Sammelprobenbezeichnung Deklarationsanalysen	SP 1 bis SP 4

Empfehlungen

- 6. Bautechnische Zum Zeitpunkt der Aufschlussarbeiten weisen die Böden im Bereich des geplanten Erdplanums der Straßenbefestigung eine überwiegend steife, bereichsweise weiche bis steife Konsistenz auf. Die vorliegenden Böden sind als witterungsempfindlich einzustufen. Aufgrund der Bodenart kann erfahrungsgemäß die gemäß den ZTV E-StB 17 an die Tragfähigkeit im Planumsbereich gestellte Anforderung von Ev₂ ≥ 45 MN/m² ohne bodenverbessernde Maßnahmen nicht erzielt werden. Wir empfehlen daher im Zuge der Ausschreibung einen Bodenaustausch in einer Dicke von ca. 50 cm einzukalkulieren. Zudem ist ein geeignetes (Geotextilrobustheitsklasse **GRK 5**, ≥ 300 g/m²) auf der Aushubsohle einzubauen. Als Bodenverbesserungsmaterial sollte kornabgestuftes gebrochenes Festgestein der Körnung 0/100 mm mit einem Anteil an abschlämmbaren Bestandteilen von maximal 10 Masse-% (bestimmt am Anteil < 45 mm) zur Verwendung kommen. Die erforderliche Dicke der Bodenaustauschschicht ist im Rahmen der Bauausführung im Probefeld mittels Lastplattendruckversuchen nach DIN 18 134 zu ermitteln. Zum Nachweis der Verdichtung bzw. Tragfähigkeit der Böden/Baustoffe verweisen wir auf die in den ZTV E-StB 17 bzw. den ZTV SoB-StB 04/07 genannten Vorgaben und Empfehlungen.
 - Im Bereich der Hauptverfüllung sind die im Zuge der erforderlichen Aushubarbeiten anfallenden Böden. mit entsprechendem Wassergehalt und Geräteeinsatz, nur mit bautechnisch erhöhtem Aufwand zum Wiedereinbau geeignet. Im Bereich Hauptverfüllung ein kornabgestuftes Vorsiebmaterial (gebrochenes Festgestein) der Körnung 0/32 mm mit einem Anteil an Korn d ≤ 0,063 mm von maximal 10 Masse-% zu empfehlen. Der Wassergehalt sollte im Bereich des Proctoroptimums liegen. Zum Nachweis der Verdichtung bzw. Tragfähigkeit der Böden der Leitungszone und Hauptverfüllung verweisen wir auf die in den ZTV E-StB 09 und ZTV A-StB 12 genannten Vorgaben und Empfehlungen.
 - Die anstehenden Böden im Bereich der Kanalsohle sind als nicht ausreichend tragfähig einzustufen. Hier ist ein Bettungspolster einzuplanen. Die erforderliche Dicke des Bodenaustausches kann im Rahmen der Ausschreibung mit ca. 30 cm angenommen werden. Als Bodenaustauschmaterial eignet sich z.B. ein kornabgestuftes gebrochenes Festgestein der Körnung 0/22 mm mit einem Anteil an abschlämmbaren Bestandteilen von maximal 10 Masse-%. Die erforderliche Dicke der Bodenaustauschschicht ist im Rahmen der Bauausführung unter Berücksichtigung der rohrstatischen Anforderungen zu ermitteln. Die Filterstabilität gegenüber der Rohrzonenverfüllung ist nachzuweisen.

 Gemäß DIN 4124 sind Gräben von mehr als 1.25 m Tiefe durch einen entsprechenden Verbau zu sichern oder derart abzuböschen, dass Beschäftigte nicht durch Abrutschen von Massen gefährdet werden können. Im Zuge der Aufschlussarbeiten wurde bis in eine maximale Aufschlusstiefe von ca. 3,0 m unter GOK im Bereich der Talaue (Baggerschurf BS 4) ein mäßiger Schichtwasserzulauf festgestellt. Nach einer Wartezeit von ca. 1,5 Std. stellte sich in einer Tiefe von ca. 2 m unter GOK ein Wasserstand ein. Im Bereich der Kanalgräben, welche nicht vom Grundwasser tangiert werden (Hangschulter) kann z.B. ein Stadtverbau mit stählernen Verbauelementen eingesetzt werden. Im Bereich der Talaue ist ein Gleitschienenverbau in Kombination mit Grundwasserhaltung zu empfehlen. Der Verbau ist hierbei kraftschlüssig an die Grabenwandung anzulegen, um somit die Gefahr von Nachrutschungen und Setzungsschäden zu minimieren. Zudem kann es erforderlich sein, die Stirnseiten ebenfalls verbautechnisch zu sichern. Bezüglich der Ausführung und Sicherheitsbestimmung sind die Empfehlungen der Hersteller und Lieferanten, der DIN 4124 sowie der Unfallverhütungsvorschriften zu berücksichtigen.

Unter der Annahme, dass es sich im Bereich der Talaue um eingestautes Schichtwasser handelt und lediglich ein mäßiger Zufluss besteht (Bauausführung in der trockenen Jahreszeit), kann eine Grundwasserabsenkung mittels offener Wasserhaltung erfolgen. Der Erdaushub unterhalb des Wasserspiegels erfolgt dabei unter ständiger Sammlung und Beseitigung des zufließenden Wassers mittels **Pumpensumpf**. Der Pumpensumpf muss hierbei vor jedem weiteren Aushub der Grabensohle vertieft werden.

Sollte sich die Grundwasserabsenkung wider Erwarten auch in Abhängigkeit ungünstiger Witterungseinflüsse wie vor beschrieben nicht realisieren lassen, so sind weitere Maßnahmen zu ergreifen. Die Kanalarbeiten, insbesondere im Bereich der Talaue sollten in der trockenen Jahreszeit erfolgen.

 Aufgrund zu erwartender Bindemittelverwehungen und somit einer möglichen Beeinträchtigung der angrenzenden Bebauung, der Landesstraße und den umliegenden landwirtschaftlichen Nutzflächen wurde als weitere Variante die Wiederverwendung der Aushubböden durch Konditionierung mit einem hydraulischen Bindemittel (Aufbereitung mittels Schaufelseparators bzw. durch Einfräsen) nicht weiter aufgegriffen.

7. Anlagen

- Anlage 1: Lage des Baugebietes und der Erkundungsstellen
- Anlage 2: Profiltechnische Aufnahme und Fotodokumentation der Baggerschürfe
- Anlage 3: Versickerungsversuch
- Anlage 4: Geotechnische Laborversuche
- Anlage 5: Deklarationsanalysen inklusive PN 98-Protokoll mit

Gegenüberstellung zu den Zuordnungs- bzw. Grenzwerten

und Prüfberichten der AGROLAB Labor GmbH

8. Bemerkung

Abschließend weisen wir darauf hin, dass punktuelle Entnahmen von Bodenproben lediglich eine stichprobenartige Information über den vorhandenen Aufbau im Bereich der Entnahmestelle liefern. Gegebenenfalls sind bei Durchführung von Ausbaumaßnahmen und dem damit verbundenen großflächigen Aufschluss bei Abweichungen zu den Probenergebnissen weitere Untersuchungen erforderlich.

Alsenz, den 27.05.2020

Ingenieurgesellschaft für Qualitätssicherung im Tief- und Straßenbau Dipl.-Ing. (TU) Christoph Hans

Schulstraße 5 – 67821 Alsenz Tel.: 06362/5199722 - Fax: 06362/5199723 E-Mail: info@ig-hans.de - www.ig-hans.de

Untersuchung Nr. 2044/20

Anlage 1

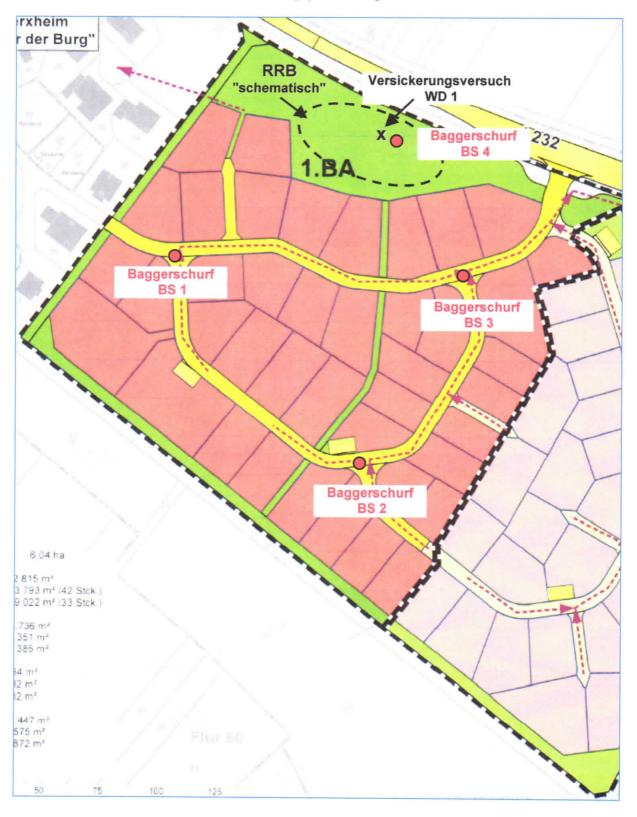
Lage des Baugebietes und der Erkundungsstellen

Ingenieurgesellschaft für Qualitätssicherung im Tief- und Straßenbau Dipl.-Ing. (TU) Christoph Hans

Schulstraße 5 – 67821 Alsenz Tel.: 06362/5199722 - Fax: 06362/5199723 E-Mail: info@ig-hans.de - www.ig-hans.de

Untersuchung Nr. 2044/20

Anlage 1-1


Lage des Baugebietes - Luftbildauszug -

Untersuchung Nr. 2044/20

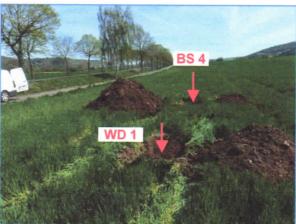
Anlage 1-2

Lage der Erkundungsstellen - Lageplanauszug -

Ingenieurgesellschaft für Qualitätssicherung im Tief- und Straßenbau Dipl.-Ing. (TU) Christoph Hans

Schulstraße 5 – 67821 Alsenz Tel.: 06362/5199722 - Fax: 06362/5199723 E-Mail: info@ig-hans.de - www.ig-hans.de

Untersuchung Nr. 2044/20


Anlage 1-3

Lage der Erkundungsstellen - Fotodokumentation -

Ingenieurgesellschaft für Qualitätssicherung im Tief- und Straßenbau Dipl.-Ing. (TU) Christoph Hans

Schulstraße 5 – 67821 Alsenz Tel.: 06362/5199722 - Fax: 06362/5199723 E-Mail: info@ig-hans.de - www.ig-hans.de

Untersuchung Nr. 2044/20

Anlage 2

Profiltechnische Aufnahme und Fotodokumentation der Baggerschürfe

Untersuchung Nr. 2044/20

Anlage 2-1


Baggerschurf BS 1 - Profiltechnische Aufnahme und Fotodokumentation -

		Art und D	icke der S	chichten			Proben-		Umwelt- technische	
Erkundung Nr. Bagger- schurf BS 1	Material nach Aug Bodenart	Boden- klasse	Farbe	Konsistenz/ Lagerungs- dichte	Dicke [cm]	bis Tiefe unter FOK [cm]	bez	Labor- versuche	Unter- suchungs- ergebnisse und Einstufung gemäß LAGA TR	
	Oberboden/ Ackerkrume: Schluff, stark sandig, kiesig, humos	ОН	rotbraun	steif	40	40	1.1			
schurf	Kies in lehmiger Matrix: Kies, schluffig, sandig, schwach tonig mit vereinzelt Naturstein- komponenten und lehmigen Einschaltungen	GU*	rotbraun	"steif"/ mitteldicht	260	300	1.2	KGV 1	Sammel- probe SP 1 → Einbau- klasse Z 0	
	Zum Zeitpunkt	der Aufsc		iten wurde b kein Wasser			hlusstiefe	von 3 m ui	nter GOK	

Z 1.1

Z 1.2

Z0

Z 2

> Z 2

Untersuchung Nr. 2044/20

Anlage 2-2

Baggerschurf BS 2 - Profiltechnische Aufnahme und Fotodokumentation -

		Art und D	icke der S	chichten			Proben-		Umwelt- technische	
Erkundung Nr.	Material nach Aug	enschein	Farbe	Konsistenz/ Lagerungs-	Dicke [cm]	bis Tiefe unter	bez	eich- ung	Unter- suchungs- ergebnisse und	
	Bodenart	Boden- klasse		dichte	[ciii]	FOK [cm]	Schicht	Labor- versuche	Einstufung gemäß LAGA TR	
	Oberboden/ Ackerkrume: Schluff, stark sandig, kiesig, humos	ОН	rotbraun	steif	40	40	2.1			
Bagger- schurf BS 2	Kies in lehmiger Matrix: Kies, schluffig, sandig, schwach tonig mit vereinzelt Naturstein- komponenten und lehmigen Einschaltungen	GU*	rotbraun	"steif"/ mitteldicht	260	300	2.2	KGV 1	Sammel- probe SP 2 → Einbau- klasse Z 0	
	Zum Zeitpunkt	der Aufsc		iten wurde b kein Wasser			hlusstiefe	von 3 m ui	nter GOK	

Einbauklassen gemäß LAGA TR:

Z0 Z1.1 Z1.2 Z2 >Z2

Untersuchung Nr. 2044/20

Anlage 2-3

Baggerschurf BS 3 - Profiltechnische Aufnahme und Fotodokumentation -

		Art und D	icke der S	chichten			Proben-		Umwelt- technische	
Erkundung Nr.	Material nach Aug Bodenart	Boden- klasse	Farbe	Konsistenz/ Lagerungs- dichte	Dicke [cm]	bis Tiefe unter FOK [cm]	bez	bezeich- nung Schicht Labor- versuche		
	Oberboden/ Ackerkrume: Schluff, stark sandig, kiesig, humos	ОН	rotbraun steif	steif	40	40	3.1			
Bagger- schurf BS 3	Lehm mit dünnlagigen kiesigen Einschlüssen: Schluff, kiesig, sandig, schwach tonig mit vereinzelt Naturstein- komponenten	UL/UM	rotbraun	weich bis steif	260	300	3.2	KGV 2 & Proctor 3	Sammel- probe SP 3 → Einbau- klasse Z 0	
	Zum Zeitp			sarbeiten wui ner Schichtwa				3 m unter	GOK	

Einbauklassen gemäß LAGA TR:

Z 1.1 Z0 Z 1.2 > Z 2

Untersuchung Nr. 2044/20

Anlage 2-4

Baggerschurf BS 4 - Profiltechnische Aufnahme und Fotodokumentation -

		Art und D	icke der S	chichten			Proben-		Umwelt- technische	
Erkundung Nr.	Nr. Bodenart Boden-klasse Farbe Ronsistenz/ Lagerungs-dichte Dicke [cm] Dicke [cm] Scl Ackerkrume: Schluff, stark sandig, kiesig, humos Lehm mit dünnlagigen kiesigen Einschlüssen: Schluff, BS 4 Konsistenz/ Lagerungs-dichte Dicke [cm] Adv 40 40 40 40 40 40 40 40 40 40	bez	eich- ung	Unter- suchungs- ergebnisse und						
	Bodenart			dichte			Schicht	Labor- versuche	Einstufung gemäß LAGA TR	
Bagger- schurf BS 4	Ackerkrume: Schluff, stark sandig, kiesig,	ОН	rotbraun	steif	40	40	4.1			
	dünnlagigen kiesigen Einschlüssen: Schluff, kiesig, sandig, schwach tonig	UL/UM	rotbraun	bis	210	250	4.2	KGV 2 & Proctor 3	Sammel- probe SP 4 → Einbau- klasse Z 0	
	Zum Zeitpun in einer Tiefe v									

Einbauklassen gemäß LAGA TR:

Z0 Z1.1 Z1.2 Z2 >Z2

Ingenieurgesellschaft für Qualitätssicherung im Tief- und Straßenbau Dipl.-Ing. (TU) Christoph Hans

Schulstraße 5 – 67821 Alsenz Tel.: 06362/5199722 - Fax: 06362/5199723 E-Mail: info@ig-hans.de - www.ig-hans.de

Untersuchung Nr. 2044/20

Anlage 3

Versickerungsversuch

Untersuchung Nr. 2044/20

Anlage 3-1

Versickerungsversuch WD 1 - Untersuchungsergebnis und Fotodokumentation -

Mittels Baggerschurf wurde im Bereich des geplanten Regenrückhaltebeckens neben dem Baggerschurf BS 4 eine Prüffläche in einer Tiefe von ca. 0,6 m unter GOK angelegt und die feldgesättigte hydraulische Leitfähigkeit mit dem Doppel-Ringinfiltrometer gemäß DIN 19682-7 bestimmt.

Folgender Durchlässigkeitsbeiwert wurde ermittelt:

Versuch Nr.	Messstelle	Prüfebene [m unter GOK]	Bodenart in der Prüfebene	Durchlässigkeits- beiwert *) k _{f,u} [m/s]	Beurteilung
WD 1	neben Bagger- schurf BS 4	0,6	Schluff, kiesig, sandig, schwach tonig (UL/UM)	nach Sättigung 5 x 10 ⁻⁷	schwach durchlässig

Für die Dimensionierung von Versickerungsanlagen ist im vorliegenden Fall ein k_{Γ} Wert von 5 x 10^{-7} m/s heranzuziehen. Die aufgeschlossenen Böden sind im Bereich des geplanten Regenrückhaltebeckens als schwach durchlässig einzustufen.

Gemäß ATV A 138, Planung, Bau und Betrieb von Anlagen zur Versickerung von Niederschlagswasser liegt der entwässerungstechnisch relevante Versickerungsbereich etwa in einem k_F Bereich von 1 x 10⁻³ und 1 x 10⁻⁶ m/s.

Auf der Grundlage des durchgeführten Feldversuches beurteilt, weisen die maßgebenden Böden eine im Hinblick auf eine Versickerung gemäß ATV A 138 unzureichende Wasserdurchlässigkeit auf.

Ingenieurgesellschaft für Qualitätssicherung im Tief- und Straßenbau Dipl.-Ing. (TU) Christoph Hans

Schulstraße 5 – 67821 Alsenz Tel.: 06362/5199722 - Fax: 06362/5199723 E-Mail: info@ig-hans.de - www.ig-hans.de

Untersuchung Nr. 2044/20

Anlage 4

Geotechnische Laborversuche

Ingenieurgesellschaft für Qualitätssicherung im Tief- und Straßenbau Dipl.-Ing. (TU) Christoph Hans

Schulstraße 5 – 67821 Alsenz Tel.: 06362/5199722 - Fax: 06362/5199723 E-Mail: info@ig-hans.de - www.ig-hans.de

Untersuchung Nr. 2044/20

Anlage 4-1

Wassergehaltsbestimmung nach DIN 18121

Labor Nr.		KGV 1	KGV 2	Proctor 3
Bezeichnung		Schicht 1.2 + 2.2	Schicht 3.2 + 4.2	Schicht 3.2 + 4.2
Entnahmestelle	m	Baggerschurf BS 1 + BS 2	Baggerschurf BS 3 + BS 4	Baggerschurf BS 3 + BS 4
Entnahme	am	15.04.20	15.04.20	15.04.20
Durchgeführt	am	01.05.20	01.05.20	01.05.20
m _f + m _b	g	3363,52	3292,55	1145,11
m _t + m _b	g	3089,88	2989,65	1025,18
m _b	g	843,62	832,75	116,44
n _w	g	273,64	302,90	119,93
n _t	g	2246,26	2156,90	908,74
W _n	%	12,18	14,04	13,20

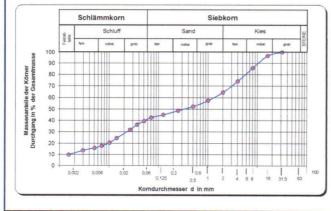
Untersuchung Nr. 2044/20

Anlage 4-2

Kornverteilung nach DIN EN ISO 17892-4

Probe:	KGV 1
riobe.	NGV I

Allgemeines


Projekt	NBG Merxheim	Durchg	eführt	am	2.5.20
Entnahmestelle	KGV 1: Baggerschurf BS 1 + BS	2 Ausgev	vertet	am	5.4.20
Bezeichnung	Schicht 1.2 + 2.2				
		<0,063	mm [%] 24,57		
Entnahme am	15.04.20 durch IG	Hans < 0,002	mm [%] 8,16		

Angaben zum Versuch

Korndichte	2,66	g/cm³	geschätzt	Trockendichte	g/cm³
Feuchtgewicht	2519,90	g		Aräometer-Nr.	1
Wassergehalt	12,18	%		Zylinder-Nr.	9

Ermittelte Hilfsgrößen

Tr. Probe	2246,3	g		Meniscuskorr.	1,3	Cm		
(gesamt)								
			Probenteilung					
Abgeschlämmt	1012,92	g	Eindampfen	Schlämmanteil	45,09	%	< .125 mm	
			Unterwasserwäagung	Differenz	-0,01	%		
(in Suspension)	29,62	g		Siebeinwaage	1233,48	g		

Siebrückstände	Siebrückstände	Siebweite	Durchgang
[9]	[%]	[mm]	[%]
0,00	0,00	100,000	100,00
0,00	0,00	100,000	100,00
0,00	0,00	63,000	100,00
0,00	0,00	56,000	100,00
0,00	0,00	31,500	100,00
75,62	3,37	16,000	96,63
244,71	10,89	8,000	85,74
259,73	11,56	4,000	74,18
216,46	9,64	2,000	64,54
157,08	6,99	1,000	57,55
116,29	5,18	0,500	52,37
81,02	3,61	0,250	48,76
82,43	3,67	0,125	45,09
0,00	0,00	0,063	
1233,34	54,91		

Datum	Zeit	R'	R=R'+C _m	T	CT	R+C _T	a	Äquivalenter	Durchgang
		(ρ-1)*1000						Korndurchmesser	
LLLL, MM. T	HH:MM:SS	[9]	[9]	[°C]	[9]	[9]	[%]	[mm]	[%]
2.5.20	00:00:30	16,3	17,6	19,2	-0,1	17,5	94,47	0,0703	42,60
2.5.20	00:01:00	15,0	16,3	19,2	-0,1	16,2	87,44	0,0507	39,43
2.5.20	00:02:00	13,7	15,0	19,2	-0,1	14,9	80,40	0,0366	36,26
2.5.20	00:04:00	11,9	13,2	19,2	-0,1	13,1	70,67	0,0265	31,87
2.5.20	00:15:00	8,9	10,2	19,2	-0,1	10,1	54,44	0,0143	24,55
2.5.20	00:30:00	7,2	8,5	19,6	-0,1	8,4	45,62	0,0102	20,57
2.5.20	01:02:00	5,9	7,2	20,6	0,1	7,3	39,58	0,0071	17,85
2.5.20	02:00:00	5,0	6,3	21,2	0,2	6,5	35,33	0,0051	15,93
2.5.20	06:00:00	4,0	5,3	21,8	0,4	5,7	30,57	0,0030	13,78
3.5.20	24:00:00	2,6	3,9	20,8	0,2	4,1	21,93	0,0015	9,89

Bod_KI	Bodenart	W _n	WL	Wp	Cu	C _c	Frostklasse	k _f	k _f
DIN 18 196	DIN 4022				d ₆₀ /d ₁₀	d ₃₀ ²/(d ₁₀ *d ₆₀)	ZTVE-StB 09	Bialas	Seiler
		[%]	[%]	[%]	[1]	[1]		[m/sec]	[m/sec]
GU*	G,u,s,t'	12,18			845,1	0,3	3	8,2E-08	

Untersuchung Nr. 2044/20

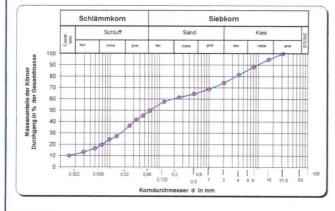
Anlage 4-3

Kornverteilung nach DIN EN ISO 17892-4

-				
	FA	h	~	۰
_	ro	n	e	_

KGV 2

Allgemeines


Projekt	NBG Merxhei	m		Durchgeführt		am	2.5.20
Entnahmestelle	KGV 2: Bagger	schurf BS 3	+ BS 4	Ausgewertet		am	5.4.20
Bezeichnung	Schicht 3.2 +	4.2			-		
				<0,063 mm [%]	24,57		
Entnahme am	15.04.20	durch	IG Hans	< 0,002 mm [%]	8,16		

Angaben zum Versuch

Korndichte	2,66	g/cm³	geschätzt	Trockendichte	g/cm³
Feuchtgewicht	2459,80	g		Aräometer-Nr.	3
Wassergehalt	14,04	%		Zylinder-Nr.	3

Ermittelte Hilfsgrößen

Tr. Probe	2156,9	g		Meniscuskorr.	1.0	Cm	
(gesamt)							
			Probenteilung				
Abgeschlämmt	1242,46	g	Eindampfen	Schlämmanteil	57,60	%	< .125 mm
			Unterwasserwäagung	Differenz	-0,04	%	
(in Suspension)	42,72	g		Siebeinwaage	914,84	g	

Siebrückstände	Siebrückstände	Siebweite	Durchgang
[9]	[%]	[mm]	[%]
0,00	0,00	100,000	100,00
0,00	0,00	100,000	100,00
0,00	0,00	63,000	100,00
0,00	0,00	56,000	100,00
0,00	0,00	31,500	100,00
114,15	5,29	16,000	94,71
137,74	6,39	8,000	88,32
149,57	6,93	4,000	81,39
150,65	6,98	2,000	74,40
118,30	5,48	1,000	68,92
91,70	4,25	0,500	64,67
69,71	3,23	0,250	61,43
82,62	3,83	0,125	57,60
0,00	0,00	0,063	
914,44	42,40		

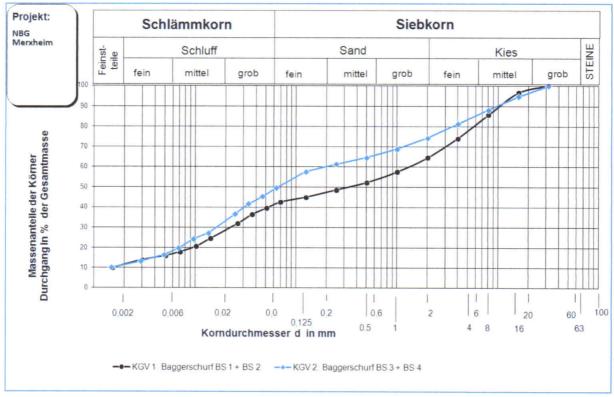
Datum	Zeit	R'	R=R'+C _m	T	CT	R+C _T	a	Äquivalenter	Durchgang
		(ρ-1)*1000						Korndurchmesser	
TT.MM.JJJJ	HH:MM:SS	[9]	[9]	[°C]	[g]	[9]	[%]	[mm]	[%]
2.5.20	00:00:30	22,2	23.2	18,9	-0.2	20.0	20.04		
2.5.20	00:00:30	20.2	21,2	18,9	-0,2	23,0	86,31 78,81	0,0635	49,72 45,40
2.5.20	00:02:00	18,5	19,5	18,9	-0,2	19,3	72,43	0.0338	41,73
2.5.20	00:04:00	16,1	17,1	18,9	-0,2	16,9	63,43	0,0248	36,54
2.5.20	00:15:00	11,8	12,8	18,9	-0,2	12,6	47,30	0,0136	27,25
2.5.20	00:30:00	10,3	11,3	19,8	0,0	11,3	42,27	0,0097	24,35
2.5.20	01:02:00	8,1	9,1	20,2	0,0	9,1	34,29	0,0069	19,75
2.5.20	02:00:00	6,4	7,4	21,2	0,2	7,6	28,62	0,0050	16,49
2.5.20	06:00:00	4,8	5,8	21,8	0,4	6,2	23,07	0,0029	13,29
3.5.20	24:00:00	3,5	4,5	20,8	0,2	4,7	17,46	0,0015	10.06

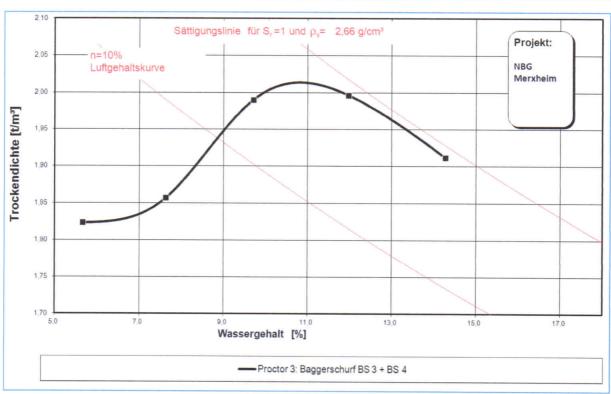
Bod_KI	Bodenart	W _n	WL	Wp	Cu	Cc	Frostklasse	k _f	k _f
DIN 18 196	DIN 4022				d ₆₀ /d ₁₀	d ₃₀ ²/(d ₁₀ *d ₆₀)	ZTVE-StB 09	Bialas	Seiler
		[%]	[%]	[%]	[1]	[1]		[m/sec]	[m/sec]
UL/UM	U,g,s,t'	14,04					3	4,0E-08	**

Schulstraße 5 – 67821 Alsenz Tel.: 06362/5199722 - Fax: 06362/5199723

E-Mail: info@ig-hans.de - www.ig-hans.de

Untersuchung Nr. 2044/20


Anlage 4-4


Proctorversuch nach DIN 18127- 100 Y

	Prob	С.	Proc	ior 3		Allgamainas				
Г						Allgemeines				
F	Projekt		NBG Merxi	neim			Durchgeführt		am	1.5.20
E	Entnahm	estelle	Proctor 3: B	aggerschi	urf BS 3 + BS	S 4	Ausgewertet		am	4.5.20
Ē	Bezeichn	ung	Schicht 3.2	+ 4.2						
E	Entnahm	e am	15.04.20	durch	IG Hans					
L					Λ <i>r</i>	gaben zum Vei	rough			
P	Korndicht	te	2,66	g/cm³	geschätzt		kleiner Proctor	-Topf	10216	942,6
7	Trockend	lichte		g/cm³			mittlerer Proct	or-Topf	12033	2208,9
٧	Wasserge	ehalt	13,20	%			großer Procto	r-Topf	34250	9817,5
									[9]	[cm ³]
/		10%	6 Luftgehaltsku	rve Sättigi	ungslinie für S	ρ_r =1 und ρ_s = 2,66		Schläge	25	
		2,000						Lagen	3	Standard
	Ľ,	9	7% Dpr		/*			Ü-koms	0,0	%
	Trockendichte [t/m²]	1,950			X			W _ū Ü-Korns	0	%
	endic	1,900				!		ρ _s Ü_Koms	2,65	[a/am3]
	rock	1,850		_		!	\dashv \vdash	ρ _s U_Koms (geschätzt)	2,05	[g/cm³]
1	_	1,800					_			
		1,750	5	7 Wasserg	9 11 ehalt [%]	13 1	5	Bemerkungen Das Material w Überkomantei	vies einen ger I > 20 mm vor	ingen n 2,5% auf
		1,750	5		100	13 1		Das Material w	vies einen ger I > 20 mm vor	ingen n 2,5% auf
	Versuchs	1,750 3	5		100	13 1	3	Das Material w	vies einen ger 1 > 20 mm vor 5	ingen n 2,5% auf
F	euchtge	1,750 3		Wasserg	1 12032	2 12100	3 12274	Das Material w Überkomantei	5 12275	ingen 1 2,5% auf
F	euchtge Zylinder	1,750 3 Nr. wicht +		Wasserg	1 12032 10216	2 12100 10216	3 12274 10216	Das Material w Überkomantei	5 12275 10216	ingen n 2,5% auf
F	euchtge Zylinder euchtge	1,750 3 Nr. wicht +	Zylinder	Wasserg g g	1 12032 10216 1816	2 12100 10216 1884	3 12274 10216 2058	Das Material w Überkomantei 4 12323 10216 2107	5 12275 10216 2059	ingen 1 2,5% auf
FZFV	euchtge Zylinder	Nr. wicht + wicht des Zyli	Zylinder	Wasserg	1 12032 10216	2 12100 10216	3 12274 10216	Das Material w Überkomantei	5 12275 10216	ingen 12,5% auf
FZFV	euchtge Zylinder euchtge Volumen	Nr. wicht + wicht des Zyli	Zylinder	g g g cm³ g/cm³	1 12032 10216 1816 942,6	2 12100 10216 1884 942,6	3 12274 10216 2058 942,6	Das Material w Überkomantei 4 12323 10216 2107 942,6	5 12275 10216 2059 942,6	ingen 1 2,5% auf
FZFVF	euchtge Zylinder euchtge Volumen	Nr. wicht + wicht des Zylichte	Zylinder	g g g g cm³ g/cm³	1 12032 10216 1816 942,6	2 12100 10216 1884 942,6	3 12274 10216 2058 942,6	Das Material w Überkomantei 4 12323 10216 2107 942,6 2,235	5 12275 10216 2059 942,6 2,184	ingen 1 2,5% auf
FZFNF	Feuchtge Zylinder Feuchtge Volumen Feuchtdic	Nr. wicht + wicht des Zylichte	Zylinder inders Pr + Tara Tara	g g g cm³ g/cm³	1 12032 10216 1816 942,6 1,927	2 12100 10216 1884 942,6 1,999 628,33 592,87	3 12274 10216 2058 942,6 2,183 633,83 589,11	Das Material w Überkomantei 4 12323 10216 2107 942,6 2,235 613,26 559,85	5 12275 10216 2059 942,6 2,184 613,57 550,78	ingen 1 2,5% auf
FZFVF	Feuchtge Zylinder Feuchtge Volumen Feuchtdic	Nr. wicht + wicht des Zylichte	Zylinder inders Pr + Tara Tara Tara	g g g cm³ g/cm³	1 12032 10216 1816 942,6 1,927 628,06 601,26 127,85	2 12100 10216 1884 942,6 1,999 628,33 592,87 128,73	3 12274 10216 2058 942,6 2,183 633,83 589,11 128,73	Das Material w Überkomantei 4 12323 10216 2107 942,6 2,235 613,26 559,85 113,31	5 12275 10216 2059 942,6 2,184 613,57 550,78 110,95	ingen 1 2,5% auf
FZFNF	Feuchtge Zylinder Feuchtge Volumen Feuchtdic	Nr. wicht + wicht des Zylichte nasse +	Zylinder inders pr + Tara Tara Tara Tara eers	g g g cm³ g/cm³	1 12032 10216 1816 942,6 1,927 628,06 601,26 127,85 26,80	2 12100 10216 1884 942,6 1,999 628,33 592,87 128,73 35,46	3 12274 10216 2058 942,6 2,183 633,83 589,11 128,73 44,72	Das Material w Überkomantei 4 12323 10216 2107 942,6 2,235 613,26 559,85 113,31 53,41	5 12275 10216 2059 942,6 2,184 613,57 550,78 110,95 62,79	ingen 1 2,5% auf
FZFNF	Feuchtge Zylinder Feuchtge Volumen Feuchtdic	Nr. wicht + wicht des Zylichte nasse +	Zylinder inders Pr + Tara Tara Tara	g g g cm³ g/cm³	1 12032 10216 1816 942,6 1,927 628,06 601,26 127,85	2 12100 10216 1884 942,6 1,999 628,33 592,87 128,73	3 12274 10216 2058 942,6 2,183 633,83 589,11 128,73	Das Material w Überkomantei 4 12323 10216 2107 942,6 2,235 613,26 559,85 113,31	5 12275 10216 2059 942,6 2,184 613,57 550,78 110,95	ingen 1 2,5% auf
F ZZ F N N N N N N N N N N N N N N N N N	Feuchtge Zylinder Feuchtge Yolumen Feuchtdic Feuchtma Trockenm Masse de Masse de	Nr. wicht + wicht des Zylichte asse + asse + s Wasser trocke	Zylinder inders pr + Tara Tara Tara Tara eers	g g g g g cm³ g/cm³ g g g g g g g g g g g	1 12032 10216 1816 942,6 1,927 628,06 601,26 127,85 26,80 473,41	2 12100 10216 1884 942,6 1,999 628,33 592,87 128,73 35,46 464,14	3 12274 10216 2058 942,6 2,183 633,83 589,11 128,73 44,72 460,38	Das Material w Überkomantei 4 12323 10216 2107 942,6 2,235 613,26 559,85 113,31 53,41 446,54	5 12275 10216 2059 942,6 2,184 613,57 550,78 110,95 62,79	ingen 1 2,5% auf
F ZZ F N N N N N N N N N N N N N N N N N	Feuchtge Zylinder Feuchtge Volumen Feuchtdic Feuchtma Trockenm Masse de Masse de	Nr. wicht + wicht des Zylichte grasse + es Wasser trocke	Zylinder inders pr + Tara Tara Tara Tara eers	g g g cm³ g/cm³	1 12032 10216 1816 942,6 1,927 628,06 601,26 127,85 26,80 473,41	2 12100 10216 1884 942,6 1,999 628,33 592,87 128,73 35,46 464,14	3 12274 10216 2058 942,6 2,183 633,83 589,11 128,73 44,72 460,38	Das Material w Überkomantei 4 12323 10216 2107 942,6 2,235 613,26 559,85 113,31 53,41 446,54	5 12275 10216 2059 942,6 2,184 613,57 550,78 110,95 62,79 439,83	ingen 1 2,5% auf
FZ	Feuchtge Zylinder Feuchtge Volumen Feuchtdic Feuchtma Frockenn Masse de Masse de	Nr. wicht + wicht des Zylichte gasse - hasse + es Wasser trocke	Zylinder inders Pr + Tara Tara Tara Tara eers enen Probe	g g g g cm³ g/cm³ g g g g g g g g g g g g g	1 12032 10216 1816 942,6 1,927 628,06 601,26 127,85 26,80 473,41	2 12100 10216 1884 942,6 1,999 628,33 592,87 128,73 35,46 464,14	3 12274 10216 2058 942,6 2,183 633,83 589,11 128,73 44,72 460,38	Das Material w Überkomantei 4 12323 10216 2107 942,6 2,235 613,26 559,85 113,31 53,41 446,54	5 12275 10216 2059 942,6 2,184 613,57 550,78 110,95 62,79 439,83	ingen 1 2,5% auf
F T NN	Feuchtge Zylinder Feuchtge Yolumen Feuchtdic Feuchtma Trockenm Masse de Masse de	Nr. wicht + wicht des Zylichte passe + asse + asse + rocke ehalt ichte passegehalt	Zylinder inders Pr + Tara Tara Tara Tara eers enen Probe	g g g g g cm³ g/cm³ g g g g g g g g g g g	1 12032 10216 1816 942,6 1,927 628,06 601,26 127,85 26,80 473,41	2 12100 10216 1884 942,6 1,999 628,33 592,87 128,73 35,46 464,14	3 12274 10216 2058 942,6 2,183 633,83 589,11 128,73 44,72 460,38	Das Material w Überkomantei 4 12323 10216 2107 942,6 2,235 613,26 559,85 113,31 53,41 446,54	5 12275 10216 2059 942,6 2,184 613,57 550,78 110,95 62,79 439,83	ingen 1 2,5% auf
F T NN	Feuchtge Zylinder Feuchtge Volumen Feuchtdic Feuchtma Frockenm Masse de Masserge Frockendic Forckendic Forcken	Nr. wicht + wicht des Zylichte passe + asse + asse + rocke ehalt ichte passegehalt	Zylinder inders Pr + Tara Tara Tara Tara eers enen Probe	g g g g cm³ g/cm³ g g g g g g g g g g g g g g g g g g g	1 12032 10216 1816 942,6 1,927 628,06 601,26 127,85 26,80 473,41	2 12100 10216 1884 942,6 1,999 628,33 592,87 128,73 35,46 464,14	3 12274 10216 2058 942,6 2,183 633,83 589,11 128,73 44,72 460,38	Das Material w Überkomantei 4 12323 10216 2107 942,6 2,235 613,26 559,85 113,31 53,41 446,54	5 12275 10216 2059 942,6 2,184 613,57 550,78 110,95 62,79 439,83	1 2,5% auf
FT NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	Feuchtge Zylinder Feuchtge Volumen Feuchtdic Feuchtma Frockenm Masse de Masse de Vasserge Trockendi	Nr. wicht + wicht des Zylichte asse + asse + rocke ehalt ichte (assegehalt ichte (asseg	Zylinder inders Pr + Tara Tara Tara Tara eers enen Probe	g g g g cm³ g/cm³ g g g g g g g g g g g g g g g g g g g	1 12032 10216 1816 942,6 1,927 628,06 601,26 127,85 26,80 473,41	2 12100 10216 1884 942,6 1,999 628,33 592,87 128,73 35,46 464,14	3 12274 10216 2058 942,6 2,183 633,83 589,11 128,73 44,72 460,38	Das Material w Überkomantei 4 12323 10216 2107 942,6 2,235 613,26 559,85 113,31 53,41 446,54	5 12275 10216 2059 942,6 2,184 613,57 550,78 110,95 62,79 439,83	erkorn
FT MM	Feuchtge Zylinder Feuchtge Volumen Feuchtma Frockenm Masse de Masserge Trockendi Korr. Was	Nr. wicht + wicht des Zylichte asse + asse + rocke ehalt ichte (assegehalt ichte (asseg	Zylinder inders Pt + Tara Tara Tara Tara iers enen Probe Wn	g g g g g cm³ g/cm³ g g g g g g g g g g g g g g g g g g g	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 12100 10216 1884 942,6 1,999 628,33 592,87 128,73 35,46 464,14 7,64 1,857	3 12274 10216 2058 942,6 2,183 633,83 589,11 128,73 44,72 460,38	Das Material w Überkomantei 4 12323 10216 2107 942,6 2,235 613,26 559,85 113,31 53,41 446,54	5 12275 10216 2059 942,6 2,184 613,57 550,78 110,95 62,79 439,83 14,28 1,912 Mit Ub P Pr	erkorn W _{Pr}
FT NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	Feuchtge Zylinder Feuchtge Volumen Feuchtdic Feuchtma Frockenm Masse de Masse de Vasserge Trockendi	Nr. wicht + wicht des Zylichte asse + asse + rocke ehalt ichte (assegehalt ichte (asseg	Zylinder inders Pr + Tara Tara Tara Tara Ters enen Probe	g g g g cm³ g/cm³ g/cm³ g g g g g g g g g g g g g g g g g g g	ehalt [%] 1 12032 10216 1816 942,6 1,927 628,06 601,26 127,85 26,80 473,41 5,66 1,823	2 12100 10216 1884 942,6 1,999 628,33 592,87 128,73 35,46 464,14 7,64 1,857	3 12274 10216 2058 942,6 2,183 633,83 589,11 128,73 44,72 460,38	Das Material w Überkomantei 4 12323 10216 2107 942,6 2,235 613,26 559,85 113,31 53,41 446,54	5 12275 10216 2059 942,6 2,184 613,57 550,78 110,95 62,79 439,83 14,28 1,912	erkorn
FT NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	Feuchtge Zylinder Feuchtge Volumen Feuchtdic Feuchtma Frockenm Masse de Masse de Vasserge Trockendi	Nr. wicht + wicht des Zylichte asse + asse + rocke ehalt ichte (assegehalt ichte (asseg	Zylinder inders Pt + Tara Tara Tara Tara iers enen Probe Wn [%]	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 12100 10216 1884 942,6 1,999 628,33 592,87 128,73 35,46 464,14 7,64 1,857	3 12274 10216 2058 942,6 2,183 633,83 589,11 128,73 44,72 460,38 9,71 1,990	Das Material w Überkomantei 4 12323 10216 2107 942,6 2,235 613,26 559,85 113,31 53,41 446,54	5 12275 10216 2059 942,6 2,184 613,57 550,78 110,95 62,79 439,83 14,28 1,912 Mit Ub P Pr	erkorn W _{Pr}

Untersuchung Nr. 2044/20

Anlage 4-5

Ingenieurgesellschaft für Qualitätssicherung im Tief- und Straßenbau Dipl.-Ing. (TU) Christoph Hans

Schulstraße 5 – 67821 Alsenz Tel.: 06362/5199722 - Fax: 06362/5199723 E-Mail: info@ig-hans.de - www.ig-hans.de

Untersuchung Nr. 2044/20

Anlage 5

Deklarationsanalysen

PN 98-Protokoll